Downward Closure of Any Language is Regular
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Let X be a finite alphabet, and let L C % be an arbitrary language. We show
that the language consisting of subsequences of strings in L is regular. The next
section formally defines what we are trying to prove. The material is essentially

[1].

1 Introduction

We will treat subsequences using orderings. Define the partial order < in X*
where

x < y iff x is a subsequence of y.
Definition 1A (Closures). For language L C X, let L1 denote the upward
closure, and L| denote the downward closure, define as

Lt ={yeX":y > xforsome x € L}
Ll ={y e 3" : y < x for some x € L}

By abuse of notation, we also define xt £{y € X" : y > x}and x| £ {y € 2" :
y < x}

The main theorem can now be stated as follows:

I Theorem 1A. For any L C X*, the languages L1 and L| are regular.

2 Proof of Theorem 1A
To prove Theorem 1A, we start with a proposition and some lemmas.
Proposition 2A. If L C X" is regular, then so are L1 and L.

Proof. Let M be an DFA that accepts L. We construct NFAs by adding transitions
to M:

« To accept L1, for each a € 3, add a new a-transition from every state to itself.
« To accept L|, for each transition, say, p to g, in M, add a new e-transition
from p to q.



PrROOF OF THEOREM 1A
Definition 2A. A subset A C X* is an antichain if its elements are pairwise
incomparable. In other words, x « y and y « x for all x,y € A.
Lemma 2A. Every antichain of X* is finite.

Lemma 2B. For every language L C 3™, there exist finite F,G C X* such that
Lt =Ftand L| = X"\ G.

We show that Lemma 2A = Lemma 2B = Theorem 1A. The proof of
Lemma 2A is the most complicated, so we leave it at the end. To conclude this
section, we prove Theorem 1A from Lemma 2B.

Theorem. L1 and L| are regular for any L C 3*.
Proof. Let LT = Ff and L} = X" \ G for finite F,G C X as per Lemma 2B. Since
F1 and G1 are both regular (Proposition 2A), so are L1 and L|. O

3 Proof of Lemma 2B

Let L C X¥, the proof of Lemma 2B consists of two parts.

Lemma. There exists a finite F C >* such that LT = F1.
Proof. Let F C L be the set of minimal elements of L:

F={xeL:AyeLsty<x}
It follows that F is finite (by Lemma 2A), and F1 = L1. O

Lemma. There exists a finite G C ¥ such that L| = >* \ G?t.

Proof. Let B = X" \ L|, then B C Bt by definition. Suppose, for contradiction,
BT ¢ B, i.e. there exists x € BT N L|. Since x € Bf, let y € B such that y < x.
However, because x is also in L], we have that y € (L])] = L|, contradicting
that y € B.

Thus B = B?. Pick a finite G C X* such that G = B} = X* \ L|, it follows that
L] = 3" \ G as wanted. O

4 Proof of Lemma 2A

We are left to show that for a language L, the set of minimal elements is finite,
or in general, every antichain of X" is finite under the ordering < (for
subsequences). We start with a proposition, and prove the lemma by induction
on alphabet size.



Proor or LEmmA 2A

Definition 4A. A subset C C X" is a chain iff all elements of C are pairwise
comparable.

Proposition 4A. If Lemma 2A holds, then every infinite subset of 2* contains
an infinite chain.

Proof. By contradiction, suppose C C X" is infinite, but every chain of C is finite.
Therefore, C has infinitely many chains. By Lemma 2A, C only has finitely
many maximal elements, so there exists an element x € C that is the maximal
element of infinitely many chains. Thus, infinitely many and hence arbitrarily
long strings of X" precede x, i.e. are subsequences of x: a contradiction. O

Finally, we are ready to prove the lemma.

Lemma. Every antichain of X is finite.
Proof. By induction on [X|. Note that an alphabet of size 1 is trivial.

Assume the lemma holds for alphabet sizen — 1,but A ={y; € ¥* : i > 1}is an
infinite antichain for |%| = n. There exists some shortest string x such that x £
y; for all i > 1; if not, X* = A} C A, and thus A = X*. Furthermore, choose A
such that x is of minimum length. Note that x +# «.

Let £ = |x| and write

X =aias -y

for each a; € 3. Notice that, if ¢ = 1, then each y; € (2 \ {a;})", which
contradicts the induction hypothesis.

By the choice of x (being the shortest), we have that a;---a,_; < y; for all but
finitely many i, i.e. there exists N > 1 such that for alli > N, a;---ap_; < y;.
Without loss of generality, we can throw away the first N strings from A, and
assume it holds for all i (which is still infinitely many). Therefore, for each i,
there exists Vips Yigs %5 iy such that

Yi = Yy, a2 Yi,_ %—-1Yi,

where y;, € (Z\{a;})" for each j < £ (e.g. by choosing the shortest y; , then the
shortest y; , and so on). It is also the case that y;, € (2 \ {a;})” because
otherwise x < y;.

We proceed to throw away more strings from A. Formally, we construct a
decreasing sequence of infinite index sets N; 2 N, 2 --- 2 N, such that for every
1< j<tand p,q € N;, we have that Yp; < Vo, whenever p < gq.



Proor or LEmmA 2A
Let Ny = {i € N :i > 1}. Given N;_4, define

A] = {yl} 1l E ]Vj—l}'
If A; is finite, then for some fixed string w, the index set {i € N;_; : Vi = w} =

N; is infinite. If not, A; C (2 \ {a;})" contains an infinite chain (by induction
hypothesis)

yslj < ySZJ' < o

and it suffices to let N; be an infinite increasing subsequence of s;, s, ---.

Lastly, for p < g belonging to Ny, we have that p,q € N; for all 1 < j < £ as well.
S0 Yp. < Vg, forall1 <j<¢ and

Yp = Vp 41 Yp, %2 Vp,_1 %—~1Yp,
S Vg4 Yg, %2 Vg H-1Yg, = Vg

contradicting that A (containing y, and y,) is an antichain. O
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