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Let Σ be a finite alphabet, and let 𝐿 ⊆ Σ∗ be an arbitrary language. We show
that the language consisting of subsequences of strings in 𝐿 is regular. The next
section formally defines what we are trying to prove. The material is essentially
[1].

1 Introduction
We will treat subsequences using orderings. Define the partial order ⩽ in Σ∗

where

𝑥 ⩽ 𝑦 iff 𝑥 is a subsequence of 𝑦 .
Definition 1A (Closures). For language 𝐿 ⊆ Σ∗, let 𝐿↑ denote the upward
closure, and 𝐿↓ denote the downward closure, define as

𝐿↑ = {𝑦 ∈ Σ∗ : 𝑦 ⩾ 𝑥 for some 𝑥 ∈ 𝐿}
𝐿↓ = {𝑦 ∈ Σ∗ : 𝑦 ⩽ 𝑥 for some 𝑥 ∈ 𝐿}

By abuse of notation, we also define 𝑥↑ ≝ {𝑦 ∈ Σ∗ : 𝑦 ⩾ 𝑥} and 𝑥↓ ≝ {𝑦 ∈ Σ∗ :
𝑦 ⩽ 𝑥}.

The main theorem can now be stated as follows:

Theorem 1A. For any 𝐿 ⊆ Σ∗, the languages 𝐿↑ and 𝐿↓ are regular.

2 Proof of Theorem 1A
To prove Theorem 1A, we start with a proposition and some lemmas.

Proposition 2A. If 𝐿 ⊆ Σ∗ is regular, then so are 𝐿↑ and 𝐿↓.

Proof. Let 𝑀  be an DFA that accepts 𝐿. We construct NFAs by adding transitions
to 𝑀 :

• To accept 𝐿↑, for each 𝑎 ∈ Σ, add a new 𝑎-transition from every state to itself.
• To accept 𝐿↓, for each transition, say, 𝑝 to 𝑞, in 𝑀 , add a new 𝜀-transition

from 𝑝 to 𝑞.

□
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Proof of Theorem 1A

Definition 2A. A subset 𝐴 ⊆ Σ∗ is an antichain if its elements are pairwise
incomparable. In other words, 𝑥 ≮ 𝑦  and 𝑦 ≮ 𝑥  for all 𝑥, 𝑦 ∈ 𝐴.

Lemma 2A. Every antichain of Σ∗ is finite.

Lemma 2B. For every language 𝐿 ⊆ Σ∗, there exist finite 𝐹 , 𝐺 ⊆ Σ∗ such that

𝐿↑ = 𝐹↑ and 𝐿↓ = Σ∗ ∖ 𝐺↑.

We show that Lemma 2A ⟹ Lemma 2B ⟹ Theorem 1A. The proof of
Lemma 2A is the most complicated, so we leave it at the end. To conclude this
section, we prove Theorem 1A from Lemma 2B.

Theorem. 𝐿↑ and 𝐿↓ are regular for any 𝐿 ⊆ Σ∗.
Proof. Let 𝐿↑ = 𝐹↑ and 𝐿↓ = Σ∗ ∖ 𝐺↑ for finite 𝐹 , 𝐺 ⊆ Σ∗ as per Lemma 2B. Since
𝐹↑ and 𝐺↑ are both regular (Proposition 2A), so are 𝐿↑ and 𝐿↓. □

3 Proof of Lemma 2B
Let 𝐿 ⊆ Σ∗, the proof of Lemma 2B consists of two parts.

Lemma. There exists a finite 𝐹 ⊆ Σ∗ such that 𝐿↑ = 𝐹↑.
Proof. Let 𝐹 ⊆ 𝐿 be the set of minimal elements of 𝐿:

𝐹 = {𝑥 ∈ 𝐿 : ∄𝑦 ∈ 𝐿 s.t. 𝑦 < 𝑥}.

It follows that 𝐹  is finite (by Lemma 2A), and 𝐹↑ = 𝐿↑. □

Lemma. There exists a finite 𝐺 ⊆ Σ∗ such that 𝐿↓ = Σ∗ ∖ 𝐺↑.
Proof. Let 𝐵 = Σ∗ ∖ 𝐿↓, then 𝐵 ⊆ 𝐵↑ by definition. Suppose, for contradiction,
𝐵↑ ⊈ 𝐵, i.e. there exists 𝑥 ∈ 𝐵↑ ∩ 𝐿↓. Since 𝑥 ∈ 𝐵↑, let 𝑦 ∈ 𝐵 such that 𝑦 ⩽ 𝑥 .
However, because 𝑥  is also in 𝐿↓, we have that 𝑦 ∈ (𝐿↓)↓ = 𝐿↓, contradicting
that 𝑦 ∈ 𝐵.

Thus 𝐵 = 𝐵↑. Pick a finite 𝐺 ⊆ Σ∗ such that 𝐺↑ = 𝐵↑ = Σ∗ ∖ 𝐿↓, it follows that
𝐿↓ = Σ∗ ∖ 𝐺↑ as wanted. □

4 Proof of Lemma 2A
We are left to show that for a language 𝐿, the set of minimal elements is finite,
or in general, every antichain of Σ∗ is finite under the ordering ⩽ (for
subsequences). We start with a proposition, and prove the lemma by induction
on alphabet size.
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Proof of Lemma 2A

Definition 4A. A subset 𝐶 ⊆ Σ∗ is a chain iff all elements of 𝐶 are pairwise
comparable.

Proposition 4A. If Lemma 2A holds, then every infinite subset of Σ∗ contains
an infinite chain.

Proof. By contradiction, suppose 𝐶 ⊆ Σ∗ is infinite, but every chain of 𝐶 is finite.
Therefore, 𝐶 has infinitely many chains. By Lemma 2A, 𝐶 only has finitely
many maximal elements, so there exists an element 𝑥 ∈ 𝐶 that is the maximal
element of infinitely many chains. Thus, infinitely many and hence arbitrarily
long strings of Σ∗ precede 𝑥 , i.e. are subsequences of 𝑥 : a contradiction. □

Finally, we are ready to prove the lemma.

Lemma. Every antichain of Σ∗ is finite.
Proof. By induction on |Σ|. Note that an alphabet of size 1 is trivial.

Assume the lemma holds for alphabet size 𝑛 − 1, but 𝐴 = {𝑦𝑖 ∈ Σ∗ : 𝑖 > 1} is an
infinite antichain for |Σ| = 𝑛. There exists some shortest string 𝑥  such that 𝑥 ≰
𝑦𝑖 for all 𝑖 > 1; if not, Σ∗ = 𝐴↓ ⊆ 𝐴, and thus 𝐴 = Σ∗. Furthermore, choose 𝐴
such that 𝑥  is of minimum length. Note that 𝑥 ≠ 𝜀.

Let ℓ = |𝑥| and write
𝑥 = 𝑎1𝑎2⋯𝑎ℓ

for each 𝑎𝑘 ∈ Σ. Notice that, if ℓ = 1, then each 𝑦𝑖 ∈ (Σ ∖ {𝑎1})∗, which
contradicts the induction hypothesis.

By the choice of 𝑥  (being the shortest), we have that 𝑎1⋯𝑎ℓ−1 ⩽ 𝑦𝑖 for all but
finitely many 𝑖, i.e. there exists 𝑁 ⩾ 1 such that for all 𝑖 ⩾ 𝑁 , 𝑎1⋯𝑎ℓ−1 ⩽ 𝑦𝑖.
Without loss of generality, we can throw away the first 𝑁  strings from 𝐴, and
assume it holds for all 𝑖 (which is still infinitely many). Therefore, for each 𝑖,
there exists 𝑦𝑖1 , 𝑦𝑖2 , ⋯, 𝑦𝑖ℓ  such that

𝑦𝑖 = 𝑦𝑖1𝑎1𝑦𝑖2𝑎2⋯𝑦𝑖ℓ−1𝑎ℓ−1𝑦𝑖ℓ .

where 𝑦𝑖𝑗 ∈ (Σ ∖ {𝑎𝑗})∗ for each 𝑗 < ℓ (e.g. by choosing the shortest 𝑦𝑖1 , then the
shortest 𝑦𝑖2 , and so on). It is also the case that 𝑦𝑖ℓ ∈ (Σ ∖ {𝑎ℓ})

∗ because
otherwise 𝑥 ⩽ 𝑦𝑖.

We proceed to throw away more strings from 𝐴. Formally, we construct a
decreasing sequence of infinite index sets 𝑁1 ⊇ 𝑁2 ⊇ ⋯ ⊇ 𝑁ℓ such that for every
1 ⩽ 𝑗 ⩽ ℓ and 𝑝, 𝑞 ∈ 𝑁𝑗 , we have that 𝑦𝑝𝑗 ⩽ 𝑦𝑞𝑗  whenever 𝑝 ⩽ 𝑞.
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Proof of Lemma 2A
Let 𝑁0 = {𝑖 ∈ ℕ : 𝑖 ⩾ 1}. Given 𝑁𝑗−1, define

𝐴𝑗 = {𝑦𝑖𝑗 : 𝑖 ∈ 𝑁𝑗−1}.

If 𝐴𝑗  is finite, then for some fixed string 𝑤 , the index set {𝑖 ∈ 𝑁𝑗−1 : 𝑦𝑖𝑗 = 𝑤} =
𝑁𝑗  is infinite. If not, 𝐴𝑗 ⊆ (Σ ∖ {𝑎𝑗})∗ contains an infinite chain (by induction
hypothesis)

𝑦𝑠1𝑗 ⩽ 𝑦𝑠2𝑗 ⩽ ⋯

and it suffices to let 𝑁𝑗  be an infinite increasing subsequence of 𝑠1, 𝑠2, ⋯.

Lastly, for 𝑝 < 𝑞 belonging to 𝑁ℓ, we have that 𝑝, 𝑞 ∈ 𝑁𝑗  for all 1 ⩽ 𝑗 < ℓ as well.
So 𝑦𝑝𝑗 ⩽ 𝑦𝑞𝑗  for all 1 ⩽ 𝑗 ⩽ ℓ, and

𝑦𝑝 = 𝑦𝑝1𝑎1𝑦𝑝2𝑎2⋯𝑦𝑝ℓ−1𝑎ℓ−1𝑦𝑝ℓ

⩽ 𝑦𝑞1𝑎1𝑦𝑞2𝑎2⋯𝑦𝑞ℓ−1𝑎ℓ−1𝑦𝑞ℓ = 𝑦𝑞 ,

contradicting that 𝐴 (containing 𝑦𝑝 and 𝑦𝑞) is an antichain. □
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